The bivalve Thyasira cf. gouldi hosts chemoautotrophic symbiont populations with strain level diversity
نویسندگان
چکیده
Invertebrates from various marine habitats form nutritional symbioses with chemosynthetic bacteria. In chemosynthetic symbioses, both the mode of symbiont transmission and the site of bacterial housing can affect the composition of the symbiont population. Vertically transmitted symbionts, as well as those hosted intracellularly, are more likely to form clonal populations within their host. Conversely, symbiont populations that are environmentally acquired and extracellular may be more likely to be heterogeneous/mixed within host individuals, as observed in some mytilid bivalves. The symbionts of thyasirid bivalves are also extracellular, but limited 16S rRNA sequencing data suggest that thyasirid individuals contain uniform symbiont populations. In a recent study, Thyasira cf. gouldi individuals from Bonne Bay, Newfoundland, Canada were found to host one of three 16S rRNA phylotypes of sulfur-oxidizing gammaproteobacteria, suggesting environmental acquisition of symbionts and some degree of site-specificity. Here, we use Sanger sequencing of both 16S RNA and the more variable ribulose-1,5-bisphosphate carboxylase (RuBisCO) PCR products to further examine Thyasira cf. gouldi symbiont diversity at the scale of host individuals, as well as to elucidate any temporal or spatial patterns in symbiont diversity within Bonne Bay, and relationships with host OTU or size. We obtained symbiont 16S rRNA and RuBisCO Form II sequences from 54 and 50 host individuals, respectively, during nine sampling trips to three locations over four years. Analyses uncovered the same three closely related 16S rRNA phylotypes obtained previously, as well as three divergent RuBisCO phylotypes; these were found in various pair combinations within host individuals, suggesting incidents of horizontal gene transfer during symbiont evolution. While we found no temporal patterns in phylotype distribution or relationships with host OTU or size, some spatial effects were noted, with some phylotypes only found within particular sampling sites. The sequencing also revealed symbiont populations within individual hosts that appeared to be a mixture of different phylotypes, based on multiple base callings at divergent sites. This work provides further evidence that Thyasira cf. gouldi acquires its symbionts from the environment, and supports the theory that hosts can harbour symbiont populations consisting of multiple, closely related bacterial phylotypes.
منابع مشابه
Divergent Chemosymbiosis-Related Characters in Thyasira cf. gouldi (Bivalvia: Thyasiridae)
Within the marine bivalve family Thyasiridae, some species have bacterial chemosymbionts associated with gill epithelial cells while other species are asymbiotic. Although the abundance of symbionts in a particular thyasirid species may vary, the structure of their gills (i.e., their frontal-abfrontal thickening) does not. We examined gill structure in a species tentatively identified as Thyasi...
متن کاملThe metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities.
While chemoautotrophic endosymbioses of hydrothermal vents and other reducing environments have been well studied, little attention has been paid to the magnitude of the metabolic demands placed upon the host by symbiont metabolism and the adaptations necessary to meet such demands. Here we make the first attempt at such an evaluation, and show that moderate to high rates of chemoautotrophic or...
متن کاملXenorhabdus bovienii Strain Diversity Impacts Coevolution and Symbiotic Maintenance with Steinernema spp. Nematode Hosts
UNLABELLED Microbial symbionts provide benefits that contribute to the ecology and fitness of host plants and animals. Therefore, the evolutionary success of plants and animals fundamentally depends on long-term maintenance of beneficial associations. Most work investigating coevolution and symbiotic maintenance has focused on species-level associations, and studies are lacking that assess the ...
متن کاملGenetic subdivision of chemosynthetic endosymbionts of Solemya velum along the Southern New England coast.
Population-level genetic diversity in the obligate symbiosis between the bivalve Solemya velum and its thioautotrophic bacterial endosymbiont was examined. Distinct populations along the New England coast shared a single mitochondrial genotype but were fixed for unique symbiont genotypes, indicating high levels of symbiont genetic structuring and potential symbiont-host decoupling.
متن کاملCharacterization of chemoautotrophic bacterial symbionts in a gutless marine worm Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization.
The phylogenetic relationships of chemoautotrophic endosymbionts in the gutless marine oligochaete Inanidrilus leukodermatus to chemoautotrophic ecto- and endosymbionts from other host phyla and to free-living bacteria were determined by comparative 16S rRNA sequence analysis. Fluorescent in situ hybridization confirmed that the 16S rRNA sequence obtained from these worms originated from the sy...
متن کامل